Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Wound healing presents a unique challenge for patients with diabetes. Gas therapies have gained significant attention in the wound-healing community. Carbon monoxide (CO) is a small molecule that is well known for its immune-modulating properties when administered at sublethal concentrations. CO is currently in clinical trials for lung disease, sickle cell anemia, and organ transplantation. Here, we investigated the effects of CO in an in vitro wound-healing model and subsequently developed and tested CO gas-entrapping materials (CO-GEMs) for topical application on wounds to promote healing. In this study, we report the efficacy of CO-GEMs in treating full-thickness wounds and pressure ulcers in diabetic mouse models. Collectively, our findings demonstrate that these novel gas entrapping materials could serve as an alternative therapy to both protect the wound bed and promote healing and replace bulky hyperbaric chambers, standard gauze wound dressings, or expensive skin grafts.more » « less
-
This paper investigates the existence and properties of a Bernstein–Sato functional equation in nonregular settings. In particular, we construct [Formula: see text]-modules in which such formal equations can be studied. The existence of the Bernstein–Sato polynomial for a direct summand of a polynomial over a field is proved in this context. It is observed that this polynomial can have zero as a root, or even positive roots. Moreover, a theory of [Formula: see text]-filtrations is introduced for nonregular rings, and the existence of these objects is established for what we call differentially extensible summands. This family of rings includes toric, determinantal, and other invariant rings. This new theory is applied to the study of multiplier ideals and Hodge ideals of singular varieties. Finally, we extend known relations among the objects of interest in the smooth case to the setting of singular direct summands of polynomial rings.more » « less
-
We prove that if f f is a reduced homogeneous polynomial of degree d d , then its F F -pure threshold at the unique homogeneous maximal ideal is at least 1 d − 1 \frac {1}{d-1} . We show, furthermore, that its F F -pure threshold equals 1 d − 1 \frac {1}{d-1} if and only if f ∈ m [ q ] f\in \mathfrak m^{[q]} and d = q + 1 d=q+1 , where q q is a power of p p . Up to linear changes of coordinates (over a fixed algebraically closed field), we classify such “extremal singularities”, and show that there is at most one with isolated singularity. Finally, we indicate several ways in which the projective hypersurfaces defined by such forms are “extremal”, for example, in terms of the configurations of lines they can contain.more » « less
-
Miller, Claudia; Striuli, Janet; Witt, Emily E. (Ed.)Cubic surfaces in characteristic two are investigated from the point of view of prime characteristic commutative algebra. In particular, we prove that the non-Frobenius split cubic surfaces form a linear subspace of codimension four in the 19-dimensional space of all cubics, and that up to projective equivalence, there are finitely many non-Frobenius split cubic surfaces. We explicitly describe defining equations for each and characterize them as extremal in terms of configurations of lines on them. In particular, a (possibly singular) cubic surface in characteristic two fails to be Frobenius split if and only if no three lines on it form a “triangle”.more » « less
-
null (Ed.)This article extends the notion of a Frobenius power of an ideal in prime characteristic to allow arbitrary nonnegative real exponents. These generalized Frobenius powers are closely related to test ideals in prime characteristic, and multiplier ideals over fields of characteristic zero. For instance, like these well-known families of ideals, Frobenius powers also give rise to jumping exponents that we call critical Frobenius exponents. In fact, the Frobenius powers of a principal ideal coincide with its test ideals, but Frobenius powers appear to be a more refined measure of singularities than test ideals in general. Herein, we develop the theory of Frobenius powers in regular domains, and apply it to study singularities, especially those of generic hypersurfaces. These applications illustrate one way in which multiplier ideals behave more like Frobenius powers than like test ideals.more » « less
An official website of the United States government
